2018 / 2019

3	(a) Ammonia, NH ₃ and boron trifluoride, BF ₃ are covalent compounds. NH ₃ and BF ₃
	react to form H ₃ NBF ₃ molecule.

- i) Explain why NH₃ obeys octet rule but BF₃ does not.
- ii) Show the formation of H₃NBF₃ molecule using Lewis dot symbol and label the bond formed.

[5 marks]

- (b) Oxygen difluoride, OF₂ is a strongly oxidising colourless gas.
 - i) Determine the molecular geometry of this molecule.
 - ii) Explain whether OF₂ is a polar and non-polar molecule.

[8 marks]

- (c) Aluminium and sodium are metals.
 - i) Explain the formation of metallic bond in sodium using the electron sea model.
 - ii) Why aluminium has higher boiling point than sodium?

[4 marks]

2019 / 2020

- 3 (a) Explain each of the following statements.
 - i) Upon reaction with fluorine, oxygen forms only OF₂ whereas sulphur forms SF₂, SF₄ and SF₆ molecules.
 - ii) The shape of a PF₅ molecule differs from that of an IF₅ molecule.
 - iii) Of the three possible resonances, structures for OCN⁻ BELOW, III is the best structure.

[10 marks]

- (b) Illustrate the hybridisation of the central atom in SF₄ using orbital diagrams. Show and label the overlapping of orbitals in the molecule. [7 marks]
- (c) Explain the difference in melting point between elements in group 1 and group 17. [5 marks]

2020 / 2021

3	Phosgene, COCl ₂ , is a chemical used in the production of plastics and pesticides.
	Given that chlorine cannot be the central atom,

(a) draw three (3) possible structures of phosgene.

[3 marks]

(b) determine the most plausible structure and give your reason.

[5 marks]

- (c) determine the hybrid orbital for the central atom of the most plausible structure.

 [4 marks]
- (d) name the molecular shape and draw the overlapping orbitals of COCl₂.

 [5 marks]

2021 / 2022

13. Boiling points of Br₂ and I₂ are at 58.8°C and 184.3°C respectively. The difference in the boiling points of these molecules is due to

- A. molecular size
- B. molecular shape
- C. molecular polarity
- D. molecular formula

14. Determine which molecule has dipole moment, $\mu = 0$

- A. CS₂
- B. SO₂
- C. NO
- D. H₂O

15. Choose the most plausible Lewis structure for CNO.

- A. $[C=N=O]^{-}$
- B. [C≡N-O]⁻
- C. [C−N≡O]
- D. $[C=N-O]^{-}$

16.	Choose the molecule with linear shape	
	A. O ₃ B. H ₂ S C. SCl ₂ D. XeF ₂	
17.	Arrange the following compounds in the order of increasing boiling poi	nt.
	HF, HCl, Cl ₂	
18.	The hybridisation of the central atom in the following molecules is sp^3	except
	A. NH ₃ B. H ₂ O C. ClF ₃ D. CH ₃ Cl	
19.	Deduce which of the following species has a see-saw shape.	
2022 / 2	A. SiCl ₄ B. SF ₄ C. XeF ₄ D. CH ₄	
2022 / 2	2023	
3 (a)	Selenium dioxide, SeO ₂ , is a colourless solid and one of the most available forms of selenium. i) Draw the Lewis structure of SeO ₂ . ii) Based on VSEPR theory, predict the molecular geometry of	
	SeO ₂ . iii) Determine hybridisation on the central atom. iv) Explain whether SeO ₂ is polar or non-polar.	[7 marks]
(b)	Calcium is a silvery-white soft metal that tarnishes easily in the air. By using the electron sea model, illustrate the formation of metallic bonds in calcium. Explain the electrical conductivity exhibited by calcium.	[5 marks]
(c)	Aluminium conducts electricity but aluminium chloride does not.	[5 marks]

Explain.

2023 / 2024

- 3 (a) AlCl₃ and NO₂ are two examples of chemical species that violate the octet rule.
 - (i) Draw the Lewis structure for AlCl₃ and NO₂
 - (ii) Draw the molecular structure when two AlCl₃ molecules combine to form Al₂Cl₆.
 - (iii) Draw the molecular structure when two NO₂ molecules combine to form N₂O₄.
 - (iv) Explain the difference in the bond formation for Al₂Cl₆ and N₂O₄.

[8 marks]

(b) Predict the shape and bond angle in XeF₄ molecule by using the VSEPR theory.

[3 marks]

- (c) Methyl imine, CH₂NH, is the simplest imine and a stable colourless ga
 - (i) Show the hybridisation of the C and N in CH₂NH molecule
 - (ii) Sketch the overlapping orbitals in CH₂NH and label the bonds.

[6 marks]

2024 / 2025

- 3 (a) Boron trifluoride, BF₃ and iodine trifluoride, IF₃ are simple covalent molecules
 - (i) Draw the Lewis structures for both molecules.
 - (ii) Predict the molecular shapes for both molecules based on Valence Shell Electron Pair Repulsion theory.
 - (iii) Differentiate the polarity of both molecules.

[8 marks]

- (b) Methanol, CH₃OH and pentane, CH₃CH₂CH₂CH₂CH₃ are colourless, volatile and flammable liquids.
 - (i) Illustrate the hybridisation process of carbon and oxygen in CH₃OH.
 - (ii) Draw and label the overlapping orbitals in CH₃OH.
 - (iii) Compare the boiling points of CH₃OH and CH₃CH₂CH₂CH₂CH₃.

[9 marks]